Muon Collider Parameters

R. B. Palmer (BNL)

Muon Collider Physics Workshop

FNAL 11/10/09

- Parameters
- Luminosity
- Collider Ring
- Cooling → emittances & transmission
- ◆ Production → Proton Energy
- Beam loading and wakes in muon acceleration
- ullet Neutrino radiation o depth & beam energy constraint
- Conclusion

Parameters

	1 -	2	T \/	
C of m Energy	1.5	3	TeV	
Luminosity	0.92	3.4	$10^{34} \ {\rm cm}^2 {\rm sec}^{-1}$	
Beam-beam Tune Shift	≈0.087	≈0.087		
Muons/bunch	2 (1.44 ?)	2	10^{12}	
Total muon Power	9	15	MW	
Ring <bending field=""></bending>	6	8.4	T	
Ring circumference	2.6	4.5	km	
eta^* at $IP = \sigma_z$	10	5	mm	
rms momentum spread	0.1 (0.3 ?)	0.1	%	
Required depth for ν rad	≈20	≈ 200	m	
Proton Energy	8	8	GeV	
Muon per proton	0.16	0.16		
Muon Survival	7	6	%	
protons/pulse	187 (134 ?)	200	Тр	
Repetition Rate	15 (21 ?)	12	Hz	
Proton Driver power	\approx 3.5	\approx 3	MW	
Muon Trans Emittance	25 (18 ?)	25	pi mm mrad	
Muon Long Emittance	72k (210k ?)	72,000	pi mm mrad	

The 3 TeV numbers are far less studied than the $1.5~{\rm TeV}$ ones The numbers keep changing & remain uncertain We just do not know enough

Luminosity Dependency

$$\mathcal{L} = n_{\text{turns}} f_{\text{bunch}} \frac{N_{\mu}^{2} \gamma}{4\pi\epsilon_{\perp} \beta^{*}} F_{2} \qquad \Delta \nu = \frac{N_{\mu} r_{o}}{4\pi\epsilon_{\perp}} F_{1}$$

 F_1 and F_2 depend on the hourglass effect and 'Disruption' enhancement. Both are of order 1.0, so approximately:

$$\mathcal{L} \propto B_{\text{ring}} P_{\text{beam}} \Delta \nu \frac{1}{\beta^*}$$

- \bullet Beam beam tune shift $\Delta \nu$, if too large, causes beam loss
- Simulations and electron experience suggests a limit of

$$\Delta \nu \leq 0.1$$

- If this can be achieved then
 - Luminosity does NOT depend on emittance
 - Luminosity \propto Beam Power, bending fields, and small β^*

Collider ring design

- It must accept the transverse emittance with 3-5 sigma
- It should have the smallest possible β^* (tight focusing at IP)

$$\mathcal{L} \propto \frac{1}{\beta^*}$$

It should have the smallest circumference → the highest average bending field

$$\mathcal{L} \propto \frac{1}{\text{circ}} \propto < \text{B}_{\text{bending}} >$$

• It should have the largest possible momentum acceptance

$$\epsilon_{\parallel} = \frac{\sigma_z \, dp/p}{\beta \gamma} \approx \frac{\beta^* \, dp/p}{\beta \gamma}$$

The larger ϵ_{\parallel} the smaller we can make ϵ_{\perp} for the same ϵ_{6}

The latest lattice (Eliana's) has dp/p acceptance $\to 1$ % which would allow $\sigma_p/p:~0.1\to 0.3$ % and might allow lower ϵ_\perp (see later)

Dependencies on Transverse Emittance

Luminosity may not depend on emittance BUT

$$N_{\mu} = \frac{4\pi \, \Delta \nu \, \epsilon_{\perp}}{r_o} \propto \epsilon_{\perp}$$

$$N_p = \frac{N_{\mu}}{\eta_{\mu/p} \, \eta_{\text{survival}}} \propto \epsilon_{\perp}$$

$$f_{\text{rep}} = \frac{P_{\text{beam}}}{E_{\mu} \, N_{\mu}} \propto 1/\epsilon_{\perp}$$

ϵ_{\perp}	12	25	50	π mm mrad
N_{μ}	1	2	4	10^{12}
$egin{bmatrix} N_{\mu} \ N_{p} \end{bmatrix}$	93	187	374	Тр
f_{rep}	30	15	7	Hz

For 1.5 TeV (c of m)

- ullet $N_{\mu}=4\ 10^{12}$ would require lower rf frequency to accelerate
- $N_p = 374 \text{ Tp} \rightarrow \text{Space charge problems in buncher}$
- ullet But getting $\epsilon_{\perp}~<~25$ is hard

Cooling Emittances and transmission

- Every stage simulated at some level, But with many caveats
- Final $\epsilon_{\perp}=25$ (mm mrad) obtained in 50 T HTS solenoid
- ullet 12 (mm mrad) gives 10 imes Required Longitudinal emittance

Parameters using Eliana's New Lattice

6D cooling Methods

- Several proposed schemes:
 - RFOFO Guggenheim
 - FOFO Snake
 - -HCC
- They all have rf, focusing, absorbers
- They all work in simulation
- They could be used interchangeably
- The choice will depend on technical questions no yet resolved
- An important parameter is

$$Q = \frac{d\epsilon_6/\epsilon_6}{dN/n}$$

because
$$\frac{N_{\text{final}}}{N_{\text{initial}}} = \left(\frac{\epsilon_{6 \text{ initial}}}{\epsilon_{6 \text{ final}}}\right)^{1/Q}$$

Estimated transmission \rightarrow p intensities & power

Based on simulations plus relatively optimistic estimates of matching

- Only $\approx 7\%$ survive (only part of this loss is from decay)
- This means that the initial pion, and thus proton, bunches must be intense

Meson Production \rightarrow Proton Energy

- Maximum production at 8 GeV
- ullet Requires pprox 200 Tp in 2 nsec o Severe space charge tune shift in buncher
- But appears possible with 6-8 bunches & trombones (Ankenbrandt)

Loading of Muon Acceleration

- Short range longitudinal wake for 1.3 GHz ILC cavities & σ_z =13.2 mm rms
- Wake=3.75 MV (Yakovlev)
- ullet If 31 MV/m = 12% wake

GdfidL, Wakepotential, windowwake, set- 0

• Is corrected by rf waveform (Balakin)

Beam Loading

- ullet Uses pprox 10 % of rf energy for each transit of both charges
- Giving good efficiency but requiring high rf power to maintain gradient
- 2 10^{12} muons per bunch does not look impossible

Neutrino Radiation

Numbers in paretneses for 3 TeV

Neutrino Radiation Constraint on Beam Power

Radiation
$$\propto \frac{E_{\mu} I_{\mu} \sigma_{\nu}}{\theta R^2} \propto \frac{P_{\text{beam}} \gamma^2}{D}$$

- ullet For $\mathcal{L} \propto \gamma^2$ then: Radiation $\propto \gamma^4$
- Little problem at 1.5 TeV
- Depth of order 200 m for 3 TeV ring
- But muon power must be constrained
- straights must be avoided → combined function magnets
- Probably practical to "own" areas of radiation from IP straight sections

Parameters again

C of m Energy	1.5	3	6	TeV
Luminosity	0.92	3.4	0.9	$10^{34}~\mathrm{cm}^2\mathrm{sec}^{-1}$
Beam-beam Tune Shift	≈0.087	≈0.087	\approx 0.087	
Muons/bunch	2 (1.44 ?)	2	2	10^{12}
Total muon Power	9	15	3.7	MW
Ring <bending field=""></bending>	6	8.4	8.4	Т
Ring circumference	2.6	4.5	9	km
eta^* at $IP = \sigma_z$	10	5	2.5	mm
rms momentum spread	0.1 (0.3 ?)	0.1	0.1	%
Required depth for ν rad	≈20	≈ 200	≈ 200	m
Proton Energy	8	8	8	GeV
Muon per proton	0.16	0.16	0.16	
Muon Survival	7	6	5	%
protons/pulse	187 (134 ?)	200	240	Тр
Repetition Rate	15 (21 ?)	12	1.5	Hz
Proton Driver power	≈3.5	\approx 3	≈0.45	MW
Muon Trans Emittance	25 (18 ?)	25	25	pi mm mrad
Muon Long Emittance	72k (210k ?)	72,000	72,000	pi mm mrad

The 6 TeV numbers are a blind extrapolation with the same ν radiation. One should investigate going deeper, $\Delta \nu$ correction, higher < B>

Conclusion

- All parameters are tightly inter-connected
- They keep changing as we learn more, and remain uncertain
- The least certain parameter is probably the muon survival in cooling giving uncertainties in:
 - proton bunch intensity
 - required repetition rate
 - luminosity
- We also do not yet have a design for the 3 TeV ring so we do not know
 - $-\beta^*$ and thus luminosity
 - -dp/p and thus longitudinal emittance requirement
- Much work to be done